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A procedure for obtaining numerical solutions to the equations describing thermal 
convection in a compressible fluid is outlined. The method is applied to the case of 
a perfect gas with constant viscosity and thermal conductivity. The fluid is con- 
sidered to be confined in a rectangular region by fixed slippery boundaries and 
motions are restricted to two dimensions. The upper and lower boundaries are 
maintained at  fixed temperatures and the side boundaries are thermally insu- 
lating. The resulting convection problem can be characterized by six dimension- 
less parameters. The onset of convection has been studied both by obtaining 
solutions to the nonlinear equations in the neighbourhood of the critical Rayleigh 
number R, and by solving the linear stability problem. Solutions have been 
obtained for values of the Rayleigh number up to 100R, and for pressure varia- 
tions of a factor of 300 within the fluid. In  some cases the fluid velocity is com- 
parable to the local sound speed. The Nusselt number increases with decreasing 
Prandtl number for moderate values of the depth parameter. Steady finite ampli- 
tude solutions have been found in all the cases considered. As the horizontal 
dimension A of the rectangle is increased, the length of time needed to reach a 
steady state also increases. For large values of A the solution consists of a number 
of rolls. Even for small values of A,  no solutions have been found where one roll 
is vertically above another. 

1. Introduction 
Most work on convection is based upon the Boussinesq approximation, which 

is valid for a compressible fluid only when both the vertical density variation and 
the motion-induced fluctuations are small (Spiegel & Veronis 1960). In  the areas 
of astrophysics and meteorology, convection can extend over one or more pres- 
sure scale heights and the use of the Boussinesq approximation may lead to 
gross errors. 

The anelastic approximation (Ogura & Phillips 1962; Gough 1969) removes 
the restriction on the total density variation while still requiring that the relative 
density fluctuations produced by the motion be small. As we shall see later, quite 
moderate values of the parameters describing convection can lead to such 
vigorous motion that this restriction is violated. 

It seems worthwhile, therefore, to seek finite amplitude solutions of the full 
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equations without making any assumptions about the magnitudes of the velocity 
and density variations. 

This paper describes a numerical procedure for solving the full equations of 
motion of a compressible viscous fluid with heat conduction. For reasons of com- 
putational expediency, the method is applied to strictly two-dimensional motion. 
The solutions of small amplitude are compared with numerical solutions of the 
equations of the linear stability problem. Large amplitude solutions are calcu- 
lated to show how such properties as the heat flux and convective velocity depend 
upon the boundary conditions. 

The aim of this work is to establish a procedure for generating standard solu- 
tions so that other, more approximate, methods for trea,ting convection (see, for 
example, Spiegell971, 1972) can be tested for a much wider range of parameters 
than would be possible if laboratory results alone were available. I n  particular, 
these results can provide a test for the truncated modal expansion techniques 
which have been applied by Gough, Spiegel & Toomre (1969, private communica- 
tion) to  the Boussinesq case and by Latour (1972) and Latour et at. (1974) to the 
anelastic case. 

2. The equations and parameters of the problem 

are 
The equations of motion for a compressible viscous gas with heat conduction 

appt + a(pui)pxi = 0, (2.1) 

and 

where 

(2.3) 

(2.4) 

S is the specific entropy, 9 and are the coefficients of viscosity and K is the 
conductivity. All the other symbols have their usual meaning and summation 
over repeated subscripts is implied. 

After some manipulation, (2.2) and (2.3) can be rearranged into conservation- 
law form: 

E is the internal energy and W is the enthalpy of the gas. The second co-ordinate 
axis is taken t'o be vertical. 



Two-dimensional compressible convection 691 

For simplicity we shall assume that the gas obeys a perfect-gas law and that 
the specific heats, the coefficients of viscosity and the conductivity are all 
constant. Thus 

P = R*PT, (2.8) 

W = c p T ,  E = c,,T, (2.11), (2.12) 

C, = uR*, cP = (1 +a)&, (2.9)) (2.10) 

and 

(2.13) 

(2.14) 

2.1. Boundary conditions 

We suppose that motion is two-dimensional with no velocity or temperature 
gradients in the x3 direction. The least restrictive conditions to apply a t  the walls 
are free boundary conditions. The upper and lower walls are maintained a t  pre- 
scribed temperatures and the side walls are thermally insulating. The boundary 
conditions are 

u2 = au,/ax, = 0, T = q, Tu a t  x2 = 0, a2 (2.15) 

and U, = au2/ax, = aT/ax, = 0 a t  x1 = o,u,. (2.16) 

2.2. Static state 

A solution of the equations is given by the hydrostatic and thermal equilibrium 
equations with u1 = u2 =! 0. Following Spiegel (1965) we can show that 

To = P o x ,  Po = (C/R*Po)z", Po = CZrn+l, (2.17)-(2. i 9) 

where Tu 
R* P O  P O  

1, x = -+a2-x2. (2.20)-(2.22) 9 q - T u  
P O  = T, 

m is the polytropic index and C is an integration constant, its value depending 
upon the mass contained within the boundaries. 

The entropy gradient can be calculated as 

dS/dx, = g(m - a)/(m + 1). (2.23) 

In  our case this is a constant. If we consider an adiabatic displacement of a small 
parcel of gas maintained in pressure equilibrium with its surroundings, buoyancy 
forces will act to return the parcel to its original location if the local entropy 
gradient is positive. A necessary condition for the onset of convection is that t,he 
local entropy gradient be negative. In  the astrophysical literature this is known 
as the Schwarzschild criterion. 

If we subject the static state to a small perturbation and use this to provide 
initial conditions, our convection problem is specified by the ten parameters R, , 
the gas constant; y, the ratio of specific heats; K ,  the thermal conductivity; 
7, the dynamic viscosity (we assume that the bulk viscosity 7, is zero); T, and 
q, the upper and lower boundary temperatures; a, and az, the horizontal and 
vertical cell sizes; g, the gravitational acceleration; and C, which is a measure of 
the mass of the gas. 

44-2 
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Since we are free to choose our units of mass, length, time and temperature) 
we have six degrees of freedom in setting up a convection experiment. We choose 
our units such that 7, a2, Tu and the density at  the upper boundary for the static 
solution are all unity. We define an aspect ratio A, a Prandtl number G, a normal- 
ized layer thickness parameter 2, an upper-boundary Rayleigh number R and 
a horizontal wavenumber a by 

A = a,/a2, cr = c,q/K, Z = (q - T,)/Tu (2.24)-(2.26) 

and (2.27) 

If n is the number of convective rolls in the cell 

a = nn/A. (2.28) 

The convection experiment can be characterized by the six parameters y, A ,  G, 
2, m and R. We note that our definition of 2, m and R is the same as that of 
Spiegel (1965). 

3. The finite-difference scheme 
A finite-difference scheme to solve (2.1)) (2.5) and (2.6) has been developed. 

It is a modification of the two-step Lax-Wendroff scheme (see, for example, 
Richtmyer & Morton 1967, p. 302). 

In order to describe this scheme economically, we must introduce some special 
notation. Let P(i , j )  and Q ( i , j )  represent values of the variables P and Q at a grid 
point (i,j). The grid spacing 6is the same in both co-ordinate directions. We define 
averaging and difference operators by 

- I)) ,  (3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
(3.10), (3.11) 

(3.12), (3.13) 

(3.14) 

The two-step Lax-Wendroff scheme for an equation of the form 

aulat + aA,(u)/ax, = o (3.15) 

is U* = {U)-TA,A,(U), U** = U-27A,Am(U*),  (3.16), (3.17) 
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where r is t,he time step. U is the variable evaluated a t  time to. U" and U** are 
variable values a t  time to + 7 and to + 27. U* has only first-order accuracy and is 
regarded as a provisional value. U** has second-order accuracy. If we consider 
the value of U a t  a grid point (i,j) a t  time to + kr the difference scheme is seen to 
give no coupling between the set of points having even values of i +j  + k and 
those having odd values. Half the grid points may be omitted. 

If we subtract the hydrostatic equation from the momentum equation (2.5) 
and perform some manipulations on (2.4)-(2.6) we have 

a p t p  + a(pU,)/ax, = 0, (3.18) 

-a ( K g ) '  = 0, (3.20) 
axi 

where a primed quantity represents a fluctuation from the static state. No 
approximations have been made up to this point. We shall illustrate the differ- 
ence scheme for the single equation 

which contains terms of the same form as can be found in (3.18)-(3.20). The 
difference scheme is 

u" = (u )  - 7(A,(Av,( U )  + Fn( u) D, a,( u)  
+ B( U )  DrnC(U)) + ( H (  U ) ) ) ,  (3.22) 

~(Arn(Arn(U") +An(Fn(U), G m ( U ) )  U"" = u-2 

+ V ( B ( U ) , C ( U ) ) + H ( U ) ) .  (3.23) 

These equations are applied to grid points having even values of i + j + k. At first 
i t  maj7 seem unnecessary to introduce the B and C terms a t  all since they can 
readily be expressed in the manner of the P and G terms, as they have been in 
(3.22). Examination of (3.23) shows that, if B, C and H are zero, then the differ- 
ence scheme not only conserves the sum of the values of U on all grid points but 
also separately conserves the sums on the set of points with i +j  + k = 4q (even- 
even p0int.s) and the set of points with i +j + k = 4q + 2 (even-odd points), where 
q is an integer. This separate conservation property can lead to the development 
of a chequer-board instability. The diffusive term V ( B ,  C) serves to couple the 
even-even and even-odd grids and prevents this instability while still main- 
taining the overall conservation property. Such diffusive terms are present in 
the equations for the conservation of momentum and energy while the mass con- 
servation equation does not possess such terms. However, this has not led to any 
difficulty with the difference scheme. 



694 E .  Graham 

Because the difference scheme is explicit, we may expect a number of con- 
straints on the time step which must be satisfied if instability is to be avoided. 
The Courant condition for the two-step Lax-Wendroff scheme requires that 

r < S/(lul +c)2 t ,  (3.24) 

where c is the adiabatic sound speed. In  order to prevent the instability that 
occurs when explicit difference schemes are applied to simple diffusive equations, 

we must have r < pS2cp/K x 2*, r < pS2/r. (3.25), (3.26) 

No formal stability analysis of the difference scheme has been made. The calcu- 
lations reported here have been made with a time step about half the size of the 
maximum permitted by (3.24)-(3.26). A grid size of 21 x 21 has been used for 
most of the calculations. Experiments with a finer grid seldom differ by more than 
a few per cent from those using the coarse grid except when the Rayleigh number 
is so large that sharp boundary layers develop. 

4. The onset of convection 

performed by Spiegel (1965). He obtained the equations 
A linear stability analysis of the basic equations for a polytrope has been 

and 
where 

Z(W) = - CR, ( m  + 1)2 dm+1a25mO/gy, 

8 is the linearized temperature fluctuation, w is the vertical velocity, d is the 
vertical layer thickness, a is the horizontal wavenumber measured in units of d-l, 
5 = z/d and D = d/dg. By introducing 

and the definition of the Rayleigh number R, we have 

(0' -a2 )  0 = <"w, T(w) = RZ2m-1~25m6'. (4.5), (4.6) 

(4.7) 

The boundary conditions for free surfaces are 

at w = 8 = D2w + (m/<) Dw = 0 6 = Z-l, (1 +Z)/Z.  

A variety of numerical methods exists for solving (4.5) and (4.6) for the eigen- 
value R. We used a special programming language called BODEL, which we had 
developed to solve systems of ordinary and partial differential equations. The 
input to the BODEL compiler is a system of first-order ordinary differential 
equations. The compiler automatically generates a set of difference equations, 
which are solved by a generalized Newton-Raphson method. By constructing 
a series of solutions with varying values of the wavenumber, the minimum 
Rayleigh number and the corresponding critical wavenumber a, can be found. 

The variation of 22, as a function of a is shown for a number of values of 2 in 
figure 1. Solutions of the linear equations have also been obtained by Vickers 
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(1971) and Moore (1973, private communication). Whereas Moore’s results are 
in complete agreement with those of this study, Vickers’ values for the Rayleigh 
number are 50 % larger, while his eigenfunction exhibits a sharp spike near 6 = 0 
which we did not find. 

We can use the critical Rayleigh number calculated from the solution of the 
linear equations to test the method for solving the full nonlinear equations. We 
choose as initial conditions the temperature and density fields of the static 
solution with a velocity field of small amplitude which satisfies the boundary 
conditions. After integrating the full equations for a sufficient length of time for 
transient effects to disappear, an exponentially growing (or decaying) velocity 
field is found. By repeating the calculation for different values of R it is straight- 
forward to find the value of R for which the growth rate is zero (i.e. the critical 
Rayleigh number). The difference between the critical Rayleigh numbers calcu- 
lated from the full equations and the linear equations has never been found to be 
more than 4 % even when a coarse grid was used. 

5.  Numerical solutions 
The linear problem for the onset of convection is specified by the three 

parameters 2, u and m. From these we can compute R, as an eigenvalue. We have 
seen that the nonlinear problem requires specification of a t  least six parameters: 
2, A ,  m, y, v and R. If, after a sufficient length of time, a steady solution is found, 
there is no guarantee that this solution is unique. Different initial conditions may 
result in different steady solutions. 

FIGURE 1. Critical Rayleigh number of a polytrope of index 1.4 as a function of 
wavenumber for different values of the depth parameter. 
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In  order to gain some insight into compressible convection, we shall examine 
how the steady solution changes as we change each of the six parameters. In  this 
survey we define the Nusselt number as 

N = (4-Fa)/(&-FaL (5.1) 

Fa = gK/c,, ( 5 . 2 )  

F, = K ( q -  T,)/a2. (5.3) 

where Fa is the flux due to the adiabatic gradient, 

Ft is the total heat flux and F, is the conductive heat flux of the static state, 

This definition of the Nusselt number has been chosen because it coincides, for 
small layer thickness, with the normal definition used in Boussinesq theory. We 
shall characterize the velocity of the flow by A, the maximum Mach number. 

Instead of dealing directly with the ratio of specific heats, we shall employ the 
parameter a defined by (2.13), which is the polytropic index of an adiabatic con- 
figuration. I n  many physical situations, the polytropic index is close to the 
adiabatic value, so it is useful to deal with the super-adiabatic excess a - m. 

Let us introduce a relative Rayleigh number 

h = R/R,, (5.4) 

where R, = R,(a, 2, m )  is the critical Rayleigh number calculated from the linear 
equations. 

We choose as the starting point of our survey the values A = 1, IT = 1, a = 1.5, 
m = 1.4 and Z = 1 and refer to the solution for these values as the standard 
solution. The initial conditions are 

P = Po, T = To, ( 5 . 5 ) ,  (5.6) 

(5.7) 

A number of values of N,, Nu and U, were tried, but in each case the solution 
evolved to the same steady state. The time taken to reach a steady state was 
approximately one viscous time scale. 

The horizontal averages of the temperature, density and pressure distributions 
are shown in figure 2 (a). The flow pattern is shown in figure 2 (b ) .  The length of 
each arrow in this figure is proportional to the velocity. The arrows are dis- 
tributed at random with a probability proportional to the fluid density. We 
observe that, although the density varies by a factor of 2.6, the velocities along 
the upper and lower faces are remarkably similar. It might be argued that the 
velocity in the low density region should be larger in order to satisfy the 
continuity equation. This is not the case because we adopted a constant dynamic 
viscosity, so that the kinematic viscosity, and thus the boundary-layer thickness, 
is larger in the low density region. 

Now let us examine the effect of varying each of the six parameters. 
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FIGURE 2. The standard solution. ( a )  The mean temperature, density and 
pressure fields. ( b )  The velocity field. Grid size = 21 x 21. Time = 2.  

5.1. The depth parameter 

The effect of varying 8 is shown in figures 3 (a )  and (b). All the parameters have 
their standard values except for 8. We see that, while N decreases slightly with 
increasing 2, the Mach number increases sharply. It is not feasible to compute 
solutions -with small values of 2 (i.e. in the Boussinesq regime) because the 
maximum time step allowed for numerical stabiIity by (3.24) becomes small, 
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FIGURE 3. Nusselt number and maximum Mach number as functions of 2, a-m and a. 

The remaining parameters have their standard values. Grid size = 21 x 21. 

requiring large amounts of computer time. For large values of 2, errors are intro- 
duced in trying to resolve the large density and pressure variations with the 
finite-difference grid. At 2 = 4, the pressure varies by a factor of 50 between the 
upper and lower surfaces. 

5.2. The super-adiabatic excess 

Figures 3 ( c )  and ( d )  show how N and A depend upon the excess a -m. We see 
that N is quite insensitive to a-m. This is due to the way we defined N .  The 
value of Ftz/Fc tends to unity as a-nz tends to zero. The convective velocity 
increases rapidly with increasing super-adiabatic excess. 

5.3. The ratio of specific heats 

Figures 3 ( e )  and ( f )  show the result of varying a and m such that a - m = 0.1. 
We see that neither N nor A depends sensitively on a provided that the super- 
adiabatic excess is kept constant. 

5.4. The Prandtl number 

Figures 4 (a)  and (b )  show the variation of N and A as functions of (T when all the 
other parameters have their standard values. We notice a large increase in N as (T 

is reduced below 0.5. For c = 0.1 the fluid velocity exceeds half the local sound 
speed. The flow field is still similar to the field for (T = 1 except that the upper-face 
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FIGURE 4. Nusselt number and maximum Mach number as functions of Prandtl number 
and relative Rayleigh number. All other parameters have their standard values except 
in (a ) ,  which also shows 2 = 0.5. Grid size = 21 x 21. 

velocity is half the size of the velocity across the lower face. The large velocities 
give rise to departures of the density distribution from the static-state distribu- 
tion of up to 40 yo. Figure 4 (a )  also shows the variation of N with CT for Z = 0.5 
instead of 2 = 1. We see that the enhancement of the Nusselt number a t  low 
Prandtl numbers is much reduced for this smaller value of 2. This is to be 
expected since the results for the Boussinesq approximation, for which 2 tends 
to zero (see, for example, Moore & Weiss 1973), show changes of less than 5 % in 
N over the range 0.01 < v < 100. It remains to be seen whether the enhancement 
of N a t  low occurs for three-dimensional convection. This is to be the subject 
of a subsequent investigation. 

5.5. The Raybigh number 

The variation of N and ,A with h is shown in figures 4 ( c )  and (d). As h increases 
a boundary layer in the entropy gradient develops. The horizontal average ofthe 
entropy as a function of x2 is shown in figure 5 for a number of values of A. Each 
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FIGURE 5 .  Mean normalized entropy as a function of depth for a number of 
values of the relative Rayleigh number. Grid size = 2 1 x 2 1. 
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FIGURE G. Nusselt number and maximum _ - x h  number as functions of WavenumDer --tr the 
cases (i) R = 4211.9,Z = 1, (ii) R = 4211.9, 2 = 2, (iii) R = 12635, 2 = 1. 21 grid points in 
the vertical direction. 

curve is normalized to have the same maximum and minimum value. For large A, 
the entropy is nearly constant except near the boundaries. The increasing sharp- 
ness of the boundary layers sets an upper limit on the value of A that can be used 
with a particular finite-difference grid, if the boundary layer is to be adequately 
resolved. 

5.6. The wavenumber 

Our choice of constant h is not appropriate if we are investigating the effects of 
changing the wavenumber. I n  a medium unbounded in the horizontal, the 
Rnyleigh number can be prescribed but the relative Rayleigh number cannot 
since R, is a function of a and the fluid is free to choose its own value for a. The 
effect on N and 4 of varying a while holding R constant is shown in figures 6 ( a )  
and (b )  for three pairs of values of R and 2. The variation of a was effected by 
changing the aspect ratio A of the cell. If we denote by a,, the wavenumber which 
maximizes the heat flux, we see that a, is insensitive to R and 8. In  the three 
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FIGURE 7. Solutions with different aspect ratios. ( a )  Velocity field for A = 10, grid size 
= 61 x 7. ( b )  Time variation of Nusselt number for A = 10. ( G )  Time variation of Nusselt 
number for A = 2, grid size = 13 x 7. (d )  Velocity field for A = 2. (e) Velocity field for 
A = 0 . 2 , Z  = 10, grid size = 9 x 41. 

cases shown, a, is larger than the critical wavenumber for the linear stability 
problem. The problem of determining the preferred wavenumber in a horizontally 
unbounded layer is straightforward in principle. We increase the aspect ratio of 
the cell and observe the limiting value of a, Increasing A requires an increase in 
the number of grid points employed in the finite-difference scheme. 
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Figure 7 ( a )  shows the velocity field for the case A = 10. The time for the 
system to come to  equilibrium increases as A is increased. The variation of N 
with time is shown in figure 7 (b) .  For the case A = 2 ,  shown in figures 7 ( c )  and (d) ,  
the value of N approaches its equilibrium value more rapidly. The initial velocity 
field for the case A = 10 was given by (5.7) and (5.8) with N, = 20 and flu = 2 .  
This ensured that some energy was present in all the modes that are likely to be 
important in the problem. The time scale for the irregular fluctuations in N was 
equal to the convective turnover time scale, or about ten times the sound travel 
time between the upper and lower surfaces. The fluctuations were interpreted as 
being caused by the interaction of convective rolls with one another. In the case 
A = 10 seven consecutive rolls formed a t  t = 6. The solution remained almost 
steady until t = 9, when the velocity field readjusted to produce six rolls. The 
integration in time was extended to t = 20 but no further changes in the velocity 
field occurred. The seven-roll solution has a wavenumber a = 2.2,  which is close 
to a,, but smaller than am. The six-roll solution has u = 1-88, a value smaller than 
either a, or a,. The value of N is smaller for the six-roll solution than for the seven 
roll solution. I n  this case the preferred mode is not the one which maximizes the 
heat flux. 

We have also constructed solutions with A = 0.2 to see if the flow breaks up 
into a series of rolls in the vertical. No solutions of this form were found. The case 
Z = 10, where the vertical stratification is such that the pressure varies by a 
factor of 300 between the upper and lower surfaces, is shown in figure 7 (e). 

6. Summary and conclusions 
In  the parameter range and for the initial conditions considered, unique steady 

solutions were found. The length of time required to reach a steady state 
increased as the aspect ratio A of the cell increased. For larger values of A than 
those considered, it is possible that no stable steady state exists. 

The failure to find solutions with a vertical distribution of rolls has some 
significance for astrophysical convection theory. It has generally been assumed 
that the mixing length should be taken as the smaller of the pressure (or density) 
scale height aid the physical dimension of the system. In our case we find that 
coherent motions can extend over several scale heights. It remains to be seen 
whether this holds true for the three-dimensional convection a t  the large values 
of R encountered in stellar convection zones. 

The present paper illustrates the feasibility of using finite-difference methods 
to obtain numerical solutions of the full equations for compressible convection. 
The inclusion of variable conductivity, viscosity or a more complicated equation 
of state is straightforward. The difference scheme shows remarkable stability and 
has been extended to three dimensions, although the amount of computing time 
required will probably rule out a survey of the type presented here. The use of 
a finite-difference method precludes the possibility of treating the motions with 
the greatly differing length scales expected a t  high values of R. It would not be 
difficult to introduce an eddy diffusion coefficient into the numerical scheme to 
handle, a t  least in a crude way, the motions of sub-grid scale. 
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The solutions presented here provide a useful check on other more approximate 
treatments of convection. I n  a future paper, we shall give the results of comparing 
truncated series solutions of the anelastic equations with the solutions of the full 
equations. 

This work was supported in part by the National Science Foundation under 
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